
Procedure Visualization to Augment Space Mission Training

Dawn M. McIntosh1, Sharif Elcott2, Bradley J. Betts3, Robert W. Mah1

Smart Systems Research Laboratory
NASA Ames Research Center, M/S 269-1

Moffett Field, CA 94035-1000

1NASA, {Dawn.M.McIntosh, Robert.W.Mah}@nasa.gov
2QSS Group, Inc., sharif@email.arc.nasa.gov

3Computer Sciences Corporation, bbetts@email.arc.nasa.gov

Abstract

The Intelligent Virtual Station (IVS) has been

developed by the Smart Systems Research Laboratory at
the NASA Ames Research Center as a solution to some of
the training and operations challenges faced by
organizations like the International Space Station
training facilities and Mission Control engineering
teams. At present, astronaut crews are constrained by
limited access to physical mockups, which themselves
have a built-in 1-g limitation. Mission operations teams
are faced with the daunting task of controlling the
operations and maintenance of an ever-changing Station
in space. Many operations teams create and follow
textual procedures without the ability to visualize the
given actions or alternatives. The IVS allows users to
easily generate and view procedures to enhance training
and operations. Because training and mission operations
are of crucial importance to the International Space
Station and other similarly sophisticated programs, this
paper is focused on the IVS integrated procedure tool.

1. Introduction

The International Space Station (ISS) is a very

complex orbiting research facility that is being designed
and built by sixteen different nations. Adding to the
challenge are the problems associated with assembling
the Station in the hostile environment of space. Given its
complexity, it is not surprising that NASA and its
international partners are looking for ways to improve
the training of astronaut crews that will live aboard the
ISS and the mission ground controllers that will monitor

This paper is in part authored by employees of the U.S Government and is
in the public domain. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of the U.S.
Government.

and control its operation. New technologies are sought
that can bring verifiable benefits to the task of training,
such as minimizing the time required to train for a task,
increasing knowledge retention, and gaining new insight
into the operation of the station.

The Intelligent Virtual Station (IVS) is a new
approach being developed to afford complex systems
such as the ISS an ever-growing solution to some of the
difficult challenges facing training and operations. This
includes making pertinent information easily accessible
during training and simulation [1], providing spatial
awareness through the use of non-immersive virtual
environments (VEs) [2], developing software frameworks
to support the addition and integration of specialized
tools to meet a variety of training and operations needs
[3], and generating and visualizing critical spacecraft
procedures such as the replacement of on-orbit
equipment (known as Orbital Replacement Units). This
paper is focused on this last area—authoring and
visualizing spacecraft procedures—for the ISS. The work
done to date, while believed to be more broadly
applicable, has been focused on the ISS.

The IVS offers an intuitive single interface for the
crew to interact and participate in more realistic and
advanced training scenarios. Both crew and crew training
teams can generate procedures involving the
manipulation of objects using a non-immersive virtual
environment running on a portable computer. This
capability applies to both scientific-based procedures and
maintenance/repair procedures. Astronaut crews
currently train for these types of procedures by reading
textual descriptions of the task, and then practicing the
procedure in a physical hardware mockup facility with
their trainers. With the IVS, crews would be able to view
a procedure created by a trainer or scientist, then practice
the procedures using the IVS before moving to the
physical mockup. Moreover, crewmembers can repeat the
procedure training on their own laptops at their

bbetts
Proceedings of the 40th Space CongressCape Canaveral, Florida, April 2003

convenience as many times as desired prior to their
mission. The procedure generation and viewing tool can
also be useful for mission operations engineers and
ground controllers. They can easily create procedures in
real-time to handle unplanned events or emergencies.

2. IVS Overview

Before presenting the details of procedure generation

and visualization, a brief overview of some of the features
of the IVS will be given; a more detailed presentation can
be found in [2]. There are three main feature sets in the
IVS: a 3D virtual environment, a data management
system, and simulation and decision making tools. The
virtual environment provides a detailed model of the ISS,
with model geometry repurposed from CAD into a format
suitable for real-time rendering on portable computers.
The information management system accesses local and
remote databases containing ISS document-type data.
Finally, the simulation and decision making tools are at
present divided into two areas: one interfaces with
existing NASA training systems, and the other provides
procedure generation and visualization. Future work will
look to expand the number of areas to include fault
detection and identification, health monitoring, and tools
designed to improve decision making.

Figure 1 Screen shot of the IVS application. The
Zarya module has been selected by the user.

Figure 1 is a screen shot of the IVS running on a

laptop computer (Dell Latitude C840, Windows XP,
Pentium 4 at 1.7 GHz, 512 MB of RAM, NVIDIA
GeForce4 440 Go graphics card). The center pane is the
non-immersive VE displaying a 3D graphics model of
the ISS. In this case, the user has navigated to an exterior
viewing position of the ISS (the ISS is shown in its

nominal final assembly configuration). The user has
selected the Russian Zarya module for use in a procedure.
The bottom right corner of the center pane shows a
navigation guide map of the station. The map provides
top and frontal projections of the ISS with the users
current viewing position superimposed, thereby allowing
the user to determine his/her current position with
respect to the station. The left and right panes are
referred to respectively as the document explorer and the
component explorer. Both have the look and feel of
conventional file explorers. Objects in the VE can be
selected, either by clicking on the object directly in the
VE or by using the component explorer. That action in
turn brings up data associated with the object in the
document explorer. The upper panes contain the user
interface to the procedure visualization tool, the subject
of the next section of this paper.

The IVS is developed in C++ under Microsoft Visual
Studio .NET; it has approximately eighty core classes
and thirty-five thousand lines of code. It deploys on
Windows computers in either a networked or non-
networked setting (in the latter setting, resources such as
remote databases are obviously not accessible). The
software toolkits used include Microsoft Foundation
Classes [4] and OpenGL [5, 6].

3. Procedure Tool

The procedure visualization tool consists of two

distinct components: one that allows procedures to be
generated (an authoring capability), and the other that
allows procedures once created to be viewed. An
important design requirement is to make the tool easy to
use to maximize training effectiveness and efficiency.

For the procedure generation component, the user
simply selects the object of interest, initiates the creation
of a new procedure, and chooses to translate (and
possibly rotate) the object. Multiple objects can be
serially selected and manipulated in this fashion during a
single procedure generation session. During translation,
the user can set positions defining a point in Euclidian
world space that the object is required to move through.
This is important when the object must avoid another
object or move around a corner. Setting positions that the
object must traverse through allows the user to create
desired pathways or build in object avoidance. Users may
choose either a curve-smoothing polynomial
interpolation or a piecewise linear spline for each
trajectory step in the procedure. When the object is to
translate through multiple locations in the interior space
of a module, a smoothed trajectory path has a more
realistic look. In some cases, such as pulling an object out
of the rack, a straight line trajectory is of course required.

Rotation trajectories are also smoothed to provide a more
realistic simulation for the procedure.

At the class level, a Procedure is composed of a
vector of Paths. Each Path is a line or curve through
Euclidian world space that a particular Object must
follow, where an Object is a geometrical object
displayed in the VE. A Procedure is set in motion via
a Go message. This message is propagated to each Path
in turn. At a given instant in time, the Path determines
the location and rotation appropriate for its Object
and then instructs the Object to render itself. Figure 2
provides a UML object diagram of the various classes
involved; to reduce clutter, only portions of the public
interface and attributes relevant to procedures are shown.

Figure 2 UML object diagram of core classes involved
in procedure generation and viewing.

Once a procedure has been generated, the Procedure

object is saved locally to disk (using standard
serialization methods inherited from the MFC CObject
class). The procedure file can be shared with other IVS
users who could then view the newly created procedure.
Figure 3 shows a user authoring a procedure in which a
particular object (the Life Science Glovebox) is being
translated.
The viewing component of the IVS procedure tool allows
a user to select and run a locally stored procedure. Unlike
a standard movie file, IVS users have the ability to
navigate to any viewpoint during the procedure playback.

A limitation of the procedure playback is that the
translation and rotation rates are fixed and cannot be
modified by the user. It may be important for a user to
show an object spinning quickly, or translating slowly
when passing in close proximity to delicate instruments
that could be damaged if contacted. Future versions of
IVS will offer the user the ability to select and modify
these rates.

Figure 3 Screen shot of a user authoring a procedure.

4. Related Work

The need to visualize and assess training and

operations procedures is critically important for many
complex systems. Several tools for procedure
visualization are available. The IVS allows users to easily
generate and visualize procedures for both planned and
unplanned tasks. Some of the existing tools provide the
users with an interactive viewing GUI [7], and allow the
user to select individual steps as well as the ability to
view relevant text [8]. DELMIA’s high-end product,
ENVISION/ERGO [9], has an interactive interface for
viewing procedures, provides users with an interface for
generating procedures, and offers motion capture,
collision detection, and cycle time derivation. A
DELMIA plug-in product is required to play back
procedure simulations. Existing tools simulate
procedures performed in the 1-g environment only.

Many aerospace companies and automobile
manufacturers use tools such as those listed above in
their design, development, and assembly phases. In
recent years, many of these companies have turned to
virtual reality to achieve higher levels of realism and
analysis efficiency.

Virtual reality (VR) has been widely used in the
world of construction. It is being used to train

construction workers on the operation of equipment and
construction techniques. One VR tool, VECWIT [10],
combines a 3D virtual construction site with other visual
media to convey information on safety, load weight, and
distances. Assembly and disassembly procedures are
practiced in the VR environment with feedback to the
user if they failed to accomplish the task.

The 3D simulation tool COSIMIR® [11] and its
variants are also used to satisfy many types of training
needs. COSIMIR® VR is a variant of the COSIMIR® tool
being used by the German Space Agency for training
astronauts and as a planning tool for conducting robot-
assisted experiments [12, 13]. The COSIMER® VR tool
is used to train astronauts for the ISS COLUMBUS
module in a distributed environment [12]. In this
application, the user can practice a set of actions prior to
performing the actual experiment with robotic tools [13].

5. Conclusions and Future Work

This work has illustrated a straightforward technique

for generating procedures for complex systems. One
conclusion, and a novel feature of the IVS, is that the
ability to author procedures within a VE easily and in
real-time can be done with a small set of interacting
classes. As well, using standard class serialization
techniques dramatically reduced the effort involved in
storing and sharing procedures (at the expense of human
readability). Another conclusion drawn from this work is
the necessity of working early and often with potential
users. Their involvement has and will continue to be
useful in identifying critical research challenges. Finally,
as the survey of related work shows, VR training, while a
still-maturing field, has a broad range of disciplines to
which it can be applied.

There is a need to augment current training due to
limitations posed by text-based procedures and physical
mockups. With that in mind, the future development of
the procedure tool will focus on the following:

• An enriched feature set, including the ability to:
reuse procedure steps; allow connections between
objects; apply deformations to hoses and wires;
allow conditional branching; dynamically modify
training scenarios; include textual information in a
procedure step to accommodate non-physical
actions; and vary rotation and translation speeds.

• Offering collaborative VE services, including
sharing control of the generation of a procedure.

• Procedure generation with dynamic modeling in the
0-g environment and high-resolution collision
detection.

• Procedure learning features to achieve more
realism, including using time data from procedure
segments actually performed in space.

• Procedure scheduling features to factor in crew time
constraints or to determine the feasibility of
performing complex tasks.

• Automatic conversion of an authored procedure to a
text document.

Potential applications of the IVS procedure tool will

include using it to evaluate and optimize task procedures
before they are approved for use in astronaut crew
training, using the procedure tool to help visualize and
assess clearance between moving objects, and evaluating
human factors issues associated with crew maneuvers
through the ISS modules.

6. Acknowledgements

The authors gratefully acknowledge the efforts and

contributions of the other IVS developers: Richard
Papasin, Rommel del Mundo, Dr. Edward Wilson, Mike
Guerrero, and Brian Niehaus.

This work was funded by the NASA Computing,
Information and Communications Technology Program
under the Computing, Networking and Information
Systems Project.

7. References

[1] B.J. Betts et al., “A Data Management System for
International Space Station Simulation Tools,” Proc. 2002 Int’l
Conf. App. Modeling and Simulation (AMS 2002), ACTA
Press, Boston, MA, Nov. 2002, pp. 500-504.

[2] R. Papasin et al., “Intelligent Virtual Station,” to appear in
Proc. 7th Int’l Sym. Art. Intell. (iSAIRAS 2003), Nara, Japan,
May 2003.

[3] B.J. Betts et al., “A Software Framework to Enhance
Training and Operations of Space Missions,” to appear in Proc.
Space Mission Challenges for Info. Tech. (SMC-IT 2003),
Pasadena, CA, Jul. 2003.

[4] M. Williams et al., Visual C++ 6 Unleashed, Sams
Publishing, Indianapolis, IN, 2000.

[5] OpenGL Home Page, http://www.opengl.org (verified Apr.
2003).

[6] M.Woo et al., OpenGL Programming Guide: The Official
Guide to Learning OpenGL, Version 1.2, 3rd ed., Addison-
Wesley, Reading, MA, 1999.

[7] http://www.xvl3d.com/en/demo/indexh.htm (verified Apr.
2003)

[8] http://www.actify.com/v2/products/SFViewer/
webshowcase.htm (verified Apr. 2003)

 [9] http://www.delmia.com/gallery/pdf/ergo.pdf (verified Apr.
2003)

[10] J. Assfalg, A. Del Bimbo, and E. Vicario, “Using 3D and
ancillary media to train construction workers,” IEEE
Multimedia, vol. 9, no. 2, 2002, pp. 88-92.

[11] E. Freund and D.H. Pensky, “COSIMIR® Factory:
Extending the Use of Manufacturing Simulations,” Proc. 2002
Int’l Conf. Robotics & Automation, Washington, D.C., May
2002, pp. 2805-2810.

[12] E. Freund and J. Rossman, “Rapid Prototyping, Astronaut
Training and Experiment Control and Supervision: Distributed
Virtual Worlds for COLUMBUS, the European Space
Laboratory Module,” Proc. SPIE: Telemanipulator
Telepresence Tech. VIII, Newton, MA, vol. 4570, 2001, pp.
113-122.

[13] E. Freund, J. Rossmann, M. Schluse, “Projective Virtual
Reality in Space Applications: A Telerobotic Ground Station
for a Space Mission,” Proc. SPIE: Sensor Fusion and
Decentralized Control in Robotic Systems III, vol. 4196, 2000,
pp. 279-290.

